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Abstract

First order shear deformation theory renders quite accurate in-plane stresses even for rather thick plates. By means
of equilibrium conditions derivatives of the in-plane stresses can be integrated to determine transverse shear and normal
stresses. The need to use in-plane derivatives requires at least cubic shape functions. Simplifying assumptions relieve
these requirements leading to the extended 2D method. While under mechanical load this method yields excellent re-
sults, poor transverse normal stresses have been obtained for plates under a sinusoidal temperature distribution. This
paper traces back these deficiencies to lentil-like deformations of each separate layer. It is proved that third or fifth
order displacement approximations through the plate thickness avoid these deficiencies. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Layered composite plates are often rather slender structures for which in-plane stresses in general can be
obtained quite accurately by means of 2D theories. Such theories are based on assumptions concerning the
distribution of the displacement functions over the plate thickness. The most simple theories assume linear
distributions of the in-plane displacements. Prominent exponents thereof are the classical lamination theory
(CLT) and the first-order shear-deformation theory (FSDT) extended to laminates by Whitney and Pagano
(1970).

Rohwer (1992) has shown that the FSDT approach is sufficient for determining excellent in-plane
stresses even if the plate slenderness is not very high. The use of higher order theories increases the com-
putational effort whereas the gain in accuracy is small. Implementation of higher order theories into finite
element approximations often requires C!!)-continuity of the shape functions which prevents simple element
formulations. If the plate is very thick a full 3D analysis is required anyway. Thus, higher order plate
theories are of advantage for in-plane stresses only within a relatively narrow bandwidth of slenderness
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rates. This statement has been proven correct for plates under mechanical loads. It seems logical that a
corresponding statement holds also for stresses due to thermal loads if the applied temperature difference
and the boundary conditions allow for a linear distribution of in-plane displacements.

In-plane stresses are in many cases fully sufficient to judge upon the structural strength. Layered
composite plates, however, show inhomogeneous and anisotropic strength properties. In order to specify
their susceptibility to delaminations and other failure modes transverse shear and normal stresses must be
known in addition. Different techniques are available to reach that aim. Applying 3D or quasi-3D finite
elements is a straight forward but often a rather expensive approach, due to the experience that often three
to five elements per layer thickness are necessary to obtain an acceptable accuracy.

To overcome this disadvantage Mau et al. (1972), Spilker et al. (1977) and Spilker (1982) proposed
layerwise hybrid-stress elements, where, in general the number of degrees of freedom depends on the
number of layers. Based on a layerwise constant shear angle theory Chaudhuri (1986) formulated a tri-
angular plate element. He used equilibrium conditions to determine transverse shear stresses. Owen and Li
(1987) started with a piecewise displacement approximation and eliminated internal degrees of freedom by
means of a substructuring technique. Robbins and Reddy (1993) developed 2D displacement elements with
a layerwise linear, quadratic or cubic displacement approximation through the thickness. In a corre-
sponding approach Gruttmann and Wagner (1994) used layerwise hierarchical polynomials. Differentiation
of the resulting displacements and application of the material law lead to the desired transverse stresses; in
some cases, smoothing procedures are recommended to reduce discrepancies in the equilibrium conditions
at layer interfaces. A detailed assessment of different modeling approaches is recently given by Noor and
Malik (2000).

On the other hand, transverse shear and normal stress components can be obtained by means of the 3D
equilibrium conditions. To that end, derivatives of the in-plane stress components which can be determined
from a simple 2D theory must be integrated over the plate thickness. Noor et al. (1990) applied such a
procedure and used the predicted stresses as input for a corrector step where displacements and stresses are
adapted to the reduced stiffnesses. Reduced transverse shear stiffnesses can also be determined in advance
when introducing simplifying assumptions as proposed by Rohwer (1988). Since this procedure accounts
for a more realistic distribution of transverse shear stresses it gives rise to a better approximation than fixed
shear correction factors. Local application of equilibrium conditions leads to the extended 2D method
which could be shown by Rolfes and Rohwer (1997), Rolfes et al. (1998a) to yield excellent results for
transverse shear and normal stresses. Also under thermal loads accurate results can be obtained as Rohwer
and Rolfes (1998) demonstrated for instance for an anti-symmetric cross-ply laminate under a temperature
gradient. More detailed numerical tests by Rolfes et al. (1998b) revealed, however, that there are cases for
which the transverse normal stresses are rather poor, sometimes without any relation to the 3D results. This
paper aims at thoroughly investigating these deviations and explaining the reasons. Furthermore, higher
order 2D theories are formulated which avoid the deficiencies. Numerical examples demonstrate which
degree of approximation in thickness direction is required for determining accurate transverse normal stress
distributions from the extended 2D method.

2. Extended 2D method, advantages and deficiencies
2.1. Theoretical basis

Finding a suitable yardstick for a sound and fair judgement upon the accuracy of the extended 2D
method is a major problem which must be solved. Test results are not available and would be very difficult
to obtain. Therefore, one must cope with 3D elasticity solutions to compare with. Closed form solutions
including the transverse stress components are available for simply supported rectangular plates with a
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symmetric lay-up by Pagano (1970), Srivinas and Rao (1970) and an antisymmetric lay-up by Noor and
Burton (1990). Vel and Batra (1999) have treated rectangular plates with two opposite edges simply sup-
ported and eight different boundary conditions satisfied at the other two edges. Solutions are obtained by
means of infinite series. However, these solutions are developed for mechanical loads only. Extensions to
thermal load are possible but specific boundary conditions must be kept.

On the other hand the third author has had the chance to use a computer program based on the dif-
ferential quadrature method by Malik and Bert (1998). This numerical method discretizes the considered
problem in a so-called quadrature net. Results are extremely close to analytical solutions and are not re-
stricted with respect to boundary conditions. Results obtained with this program will serve as the reference
solutions. Coordinate system and plate dimensions are given in Fig. 1. The axes x; and x, form the ref-
erence surface located half way between the upper and lower laminate surface. Fiber angles are specified
with respect to the x; axis.

Detailed deductions of the extended 2D method can be found in the papers of Rolfes et al. (1998a,b). In
the following, the theoretical basis of the method is given in a condensed form. Starting point of the de-
velopment is the 3D equilibrium condition. Having solved for the transverse stresses results in transverse
shear stresses depending on derivatives of in-plane stresses,

X3
O = — / [y + (1= 0up) 0ap) ] dc (1)
c=—h/2
and transverse normal stress as function of the transverse shear stress derivatives
X3
033 = —/ 03.dc. (2)
c=—h/2
It is assumed that the thermal load is distributed linearly through the thickness.
AT()Cl,X27X3) = To(xl,X2)+X3T1(X1X2). (3)
X3
T xs
layer k
fli
[

Fig. 1. Coordinate system and laminate specifications.
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Introducing this assumption and the material law for a layered composite plate based on FSDT into the in-
plane equilibrium conditions leads to

N, Nt’h h T,
i {2} (10 ()
' 8 ,
where
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[Goc w Foupy ] = _/ Cope [1 ”]dr|: ~eprp Nw,fp:| (5)
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with C,g,, being the residual stiffness coefficients of the respective layer, 4,p,,, Bup,p> Dapy, the compliance
coefficients of the plate, N,; and M,; the membrane and bending stress resultants, Nji and M the corre-
sponding thermal stress resultants and o, the thermal expansion coefficients. Utilizing these transverse
shear stresses in the out-of-plane equilibrium condition results in the transverse normal stress

_Ix ~ Nypap Npap WU [0~ [ Toup
033 = |: Goc/?“/p Fm‘[fypi| { { M'p,oc/i } + { Mth |: a“ﬂ bxﬂ:| ]"171[3 ) (7)

7 v0.0B
where
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These formulae make obvious that the calculation of transverse shear stresses require first derivatives of
the membrane and bending stress resultants, whereas for the transverse normal stresses even second de-
rivatives are needed. In case of a displacement approach, the shape functions therefore must allow for
second and third derivatives, respectively. This constraint can be released through certain assumptions
which are expected to have low influence on the transverse stresses. Such an expectation must be proved
afterwards.

The extended 2D method as proposed by Rolfes and Rohwer (1997) neglects the influence of the
membrane stress resultants N,; and the bending moment derivatives Mj;,; M5 Miz1; Mz, on the
transverse shear stresses. Consequently the remaining bending moment derivatives can be expressed in
terms of the transverse shear stress resultants.

M(m),oc = Qow (9)

The transverse shear stresses then read

th Bth

b B! T,
03 = fapQp + ([Gaﬂw Fapyo] [ Bih D%ﬁ] + [ b;‘;]) { T?ﬁ }a (10)
P P i

where f,; comprises those components of F,,, which multiply with the remaining derivatives of M,, and,
corresponding to the mechanical plate stiffnesses, thermal stiffnesses are defined as
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Inserting these transverse shear stresses in the out-of-plane equilibrium condition leads to the transverse
normal stresses

~ . ~ AR B no —th Ty,
033 = _facﬁQm,/f - ([Gxﬁvﬂ Fﬁﬁ?’ﬂ} [B{ﬁ} Dltﬁ] * [a:ﬁ bM}) { TIVD;Z } (12)
P '

P

with

}aﬁ:/’ /zf;,jdg. (13)

¢=—h

Thus, the extended 2D method requires the transverse shear forces and their first derivatives to calculate the
transverse shear and normal stresses, respectively. Therefore, in case of a displacement approach the shape
functions must allow for first and second derivatives only, one derivation order less than the full equilib-
rium method.

2.2. Numerical experience and physical explanation

An evaluation of the extended 2D method based on the first-order shear deformation theory and im-
proved transverse shear stiffnesses as shown by Rohwer and Rolfes (1998) and Sparr et al. (1999) has re-
vealed that the transverse stress components are quite accurate in case of mechanical loads. That holds for
cross-ply as well as for angle-ply stacking. Differences in the displacements resulting from different locations
of load input (top, bottom, reference plane) lead to small deviations in the membrane stresses, which, due to
the integration process, results in even smaller differences in the transverse stress components. Further test
with mechanically loaded symmetric cross-ply laminated plates showed that the extended 2D method,
neglecting membrane stress resultants and bending moment derivatives, delivers nearly identical results as
an application of the full equilibrium equations. That also holds for thermally loaded plates as was shown
in the paper by Rolfes et al. (1998b).

As compared to the 3D analysis the extended 2D method applied to plates under thermal loads in many
cases delivers stresses which are good to excellent. That holds especially for the transverse shear stresses; for
the transverse normal stresses, however, large differences are determined in some cases. This chapter aims at
describing the numerical results and finding physical explanations for the discrepancies.

Test cases are rectangular plates where the boundary conditions

M2:O, W:O7 @2:0, 0'11:0 atx1:0,L17 (14)
MIZO, W:07 @1:0, 622:0 atx2:0,L2

are enforced along the edges. The quantities ¢, and ¢, specify the normal rotation around the axes x, and
x1, respectively. The plates are loaded through a temperature distribution of the form

AT(xl,X2,X3) = T() sin (TEX]/Ll) sin (TEXz/Lz) +X3Tl sin (TC)Cl/Ll) sin (TC)Cz/Lz)

Typical high-modulus fiber composites are assumed for each individual layer the material properties of
which are specified through
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EL/ET = 15, GLT/ET = 05, GTT/ET = 03378, VLT = 03, V1T = 0487

15
Er =10.0 GPa, ap =0.139 x 107°K™', ar=9x 10°°K™". (15)

As documented in the paper by Rolfes et al. (1998b) for all cases considered, the transverse shear stresses
at the edge half way between two corners obtained by means of the extended 2D method compare very well
with the corresponding 3D results. Transverse normal stresses at the plate center, however, are in many
cases not well determined by the extended 2D method. That holds especially for a temperature load which is
constant across the plate thickness (Ty # 0, T, = 0). No good agreement with the 3D results could be
reached for such a loading. Only for a plate with the anti-symmetric stacking of [0,90,0,90] and a rect-
angular ground view (L,/L; = 2), the transverse normal stresses show a similar distribution over the cross-
section as the 3D results. In case of a linear temperature distribution 7';, however, the extended 2D values
compare quite well in general. Only for a symmetric stacking of [0,90,0,90,0]s and a quadratic ground view
the transverse normal stresses are not satisfactory.

As a first step towards physical reasons for these somewhat strange results it must be understood why
transverse normal stresses appear at all in these loading cases. Let us consider a plate consisting of one
single layer subjected to a temperature load constant through the thickness (T # 0, T; = 0). Because of the
sinusoidal temperature distribution along x; and x,, lentil-like deformations will appear. The same would
happen for every separated slice. Fig. 2 makes obvious that compatibility of the slices require transverse
normal stresses, tensile stresses near the edges and compressive ones around the plate center. Likewise, this
logic holds for laminated plates with symmetric or arbitrary stacking. Orthotropy in the layer stiffnesses
may only lead to differences in the stress distribution.

In case of a temperature load linearly distributed through the thickness (T = 0, T; # 0) each separated
slice would deform either into a concave or convex shape depending on its location in thickness direction.
Transverse normal stresses due to compatibility between the slices appear as before but with a sign change
along x;. Consequently, the sinusoidal temperature load distribution in x; and x, will always render
transverse normal stresses.

Equilibrium conditions relate transverse derivatives of the transverse normal stresses to in-plane de-
rivatives of the transverse shear stresses.

0333 = —0434- (16)

At the upper and lower plate surface (x; = 44/2), the stresses o33 must vanish. Since they cannot be zero
all along x; as explained above, non-zero in-plane derivatives of ¢,; and therewith these stresses themselves
must exist. But they also must vanish at the upper and lower plate surface because of equilibrium condi-
tions.

—
‘\/

Fig. 2. Lentil-like deformations and resulting transverse normal stresses.
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For a symmetrically stacked plate under a temperature load constant through the thickness (7 # 0,
T, = 0), the stresses 6,3 must not result in transverse shear forces when integrated over the plate thickness.
Consequently the distribution along x; must at least have two maximum values. Using now the in-plane
equilibrium conditions

0433 = O (o) + (1 — 53(/3)0(1/3”; (17)

it becomes clear that a linear distribution of in-plane displacements and the resulting piece-wise linear in-
plane stresses cannot adequately model the structural behavior. A higher order polynomial is necessary.

For a non-symmetric stacking as well as under a linearly distributed temperature load resulting trans-
verse shear forces can exist. Therefore, the arguments from above do not hold anymore. But it can be
assumed that also in these cases higher order polynomials would lead to a considerable improvement in the
transverse shear and normal stress distribution.

3. Higher order lamination theories
3.1. Kinematics

From numerical experience and the preceding arguments it is clear that for the problem considered
higher order polynomial approximations of the displacements would lead to improved transverse stresses.
In order to determine necessary and sufficient polynomial degrees the displacements are developed into
power series in thickness direction.

Uy, = Zoj:c,-uxi (x3)’, (18)
w= idiwi()g)i. (19)
i=0

These series must be truncated so that the number of functional degrees of freedom is kept limited. Such
approaches have been proposed by several authors; Table 1 lists six of them. In some cases, additional
constraints are applied to reduce further the number of functional degrees of freedom. The applicability of
the different theories to thermal loads, however, is seldom checked. The considered sinusoidal temperature
distribution, in particular, is treated by Khdeir and Reddy (1991). But their results are restricted to
transverse displacements and membrane stresses; transverse stresses are not studied.

Table 1

Higher-order theories
Theory Polynomial degrees for i

¢ =1 ¢ =0 d =1 d=0

Whitney and Pagano (1970) (FSDT) 0,1 >1 0 >0
Kwon and Akin (1987) 0,1 >1 0,1,2 >2
Chang and Leu (1991) 0,1 >1 0,1,3 2,>3
Khdeir and Reddy (1991) 0,1,2,3 >3 0 >0
Lo et al. (1977) 0,1,2,3 >3 0,1,2 >2

Pandya and Kant (1988) 0,1,2,3 >3 0,1,2,3 >3




3680 K. Rohwer et al. | International Journal of Solids and Structures 38 (2001) 3673-3687

In the following, results obtained by means of the FSDT will be compared against results with ap-
proaches characterized by ¢; =1 and d; = 1 for i = 0-3 (HO-3) and for i = 0-5 (HO-5) whereas higher
order terms vanish.

Standard linear strain displacement relations are assumed where the strain components are related to the
displacement derivatives in the following way:

€1 1 Uj
& T2 Uz2
b= |2 =3 =] M (20)
&4 V23 U3+ wp
&s 713 Uz +wy
& Y12 Uiz + Uy

With the polynomial approximation of the displacements inserted the strains can also be written in the
form of a polynomial series.

& = ism (x3)". (21)

This series is to be truncated according to the truncation of the displacement development.

In general, the kinematics described above do not meet the condition of vanishing transverse shear
strains at the upper and lower plate surface. These conditions can be utilized to eliminate four functional
degrees of freedom (Reddy, 1984; Kwon and Akin, 1987). If that is done, the corresponding stiffness co-
efficients must be modified, accordingly, which may impair the quality of the displacement distribution.
Furthermore, in case of application in finite elements at least C'!) continuity conditions are required for the
shape functions. Since, in the following, the transverse shear stresses will be determined by means of the
equilibrium conditions zero transverse shear strains at the plate surfaces will not be enforced explicitly in
the displacement functions.

3.2. Elasticity relation and boundary conditions

Basis for the higher-order theories is the 3D elasticity law of the layer k.

o1 On On 0On 0 0 O1s 11 o
o O»n On O 0 Ox V22 o5}
033 O 0 0 O V33 o3
= P — AT 22
023 Ou Qs O V23 0 ’ 22)
o3 Oss 0 Y13 0
Kk LO12 k Oss 712 k L%
which in index notation reads
kKOm = kan{gn - kanAT}- (23)
The stresses can be integrated over the plate thickness leading to stress resultants of the form
le. = / Jm(X3)idX3. (24)
(h)

For i = 0,1, these stress resultants are the standard membrane forces and bending/torsion moments; indices
between 2 and 5 point to higher order stress resultants. Correspondingly, coefficients of the strain com-
ponents and the components of the temperature load are to be integrated. To that end the assumed
thickness distribution of the strains ¢, and the temperature load AT must be inserted. With
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Conpny = /( ) Opn(x3)dxs, where i,j=0,1,2,3,4,5 for HO-5 (25)
h
and
App = /() Q,,1noc,,(x3)i+”dx3 where i =0,1,2,3,4,5 for HO-5 and p =0, 1, (26)
h

the elasticity relation for the laminated plate reads
Ny = Conpen; — AmipTp- (27)
Therewith, equilibrium conditions can be established.

Nij1 + Nig,p — N3, , =0,
Nig1 +Ny,» —iNy, , =0, wherei=0,1,2,3,4,5 for HO-5. (28)
Nis;1 + Nos,p — iN33,, =0,

In case of HO-5 these are 18 conditions, whereas for HO-3 the number is reduced to 12. Correspondingly,
there are 2x 18 and 2x 12 boundary conditions to be satisfied. For a ‘simple support’ they can be specified
as follows:

Nll,- =Uy = wW; = 0 atx1 = 07L1, (29)

szi =u;, =w; = 0 atx, = 07[,2. (30)

These conditions are met if the displacement functions are of the form

uy, (u ,)mn cos (mmx; /L) sin (nmx,/Ly)
U, ZZ (#,),,, Sin (mmx; /Ly ) cos (nmxy /Ly) . (31)
w; m=1 n= (W,)mn sin (mTcx1 /L] ) COS (I’lTC)Cz/Lz)

3.3. Transverse stresses

The applied temperature load consists of the first term of the Fourier series only. Thus it is sufficient to
restrict the displacement functions to

uy, uy, cos (1x /L) sin (1xy /Ly)
Uy, p = Uy, sin(mx;/Ly)cos(mxy/Ly) . (32)
w; w;sin (x; /Ly ) cos (mx,/Ly)

Inserting them into the strain displacement relation and using the resulting strains together with the stiffness
coefficients and the temperature load in the equilibrium conditions yields a set of linear algebraic equations
to determine the unknown coefficients #,, and w;. They specify the complete displacement mode.

For the determination of the transverse stresses, only the membrane displacements u,, are used. In-plane
derivatives are formed to derive at the membrane strains. With the aid of the material law the membrane
stresses are calculated for each layer. By means of the local equilibrium conditions the in-plane derivatives
of the membrane stresses are integrated to get the transverse shear stresses, whereas integrating the in-plane
derivatives of these transverse shear stresses results in the transverse normal stresses.
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4. Numerical application
4.1. Specification of test examples

By means of three test cases the effects discussed above are evaluated. Results obtained with the ex-
tended 2D method (FSDT), with a cubic (HO-3) and with a fifth order (HO-5) displacement approxi-
mation are compared against analytical 3D solutions. Three different lay-ups are analyzed, one single
[0] layer, a four layer anti-symmetric stacking of [0,90,0,90], and a ten-layer symmetric stacking [0,90,0,
90,0]s. All three plates are of quadratic shape with a slenderness ratio of s =L/h =35. This rather
small ratio is chosen to make the differences between the theories more visible. Even smaller values are
not suitable because of increased influence of boundary layer that effects along the ‘simply supported’
edges.

Material properties and loading conditions are identical to those specified in Section 2.2. Transverse
shear stresses g3 and 0,3 are determined at the mid-side edge points (0;L,/2) and (L;/2;0), respectively,
whereas the transverse normal stresses o33 are calculated at the plate center (L, /2; L,/2). Due to the applied
thermal load and the boundary conditions these are the points where the stresses reach maximum values.
The stress distribution in x;- and x,-direction follows harmonic functions.

4.2. Single layer [0] plate

One single layer is actually not a layered structure. Such a plate is included to study the effect of the
sinusoidal temperature distribution separately.

For a thermal load constant through the thickness (T # 0, T; = 0) Fig. 3 shows the expected roughly
cubic distribution of transverse shear stresses. Larger values of 13 as compared to g,; are due to the higher
modulus values of Gir and EL as compared to Grr and Et, respectively. Transverse normal stresses o33
show compression at the plate center which confirms the reflections based on the lentil-like deformations.

The extended 2D method (FSDT) delivers zero stresses across the plate thickness. That can be traced
back to the fact that no transverse shear forces are involved, and the derivatives of the thermal load dis-
tribution vanish at the mid-side edge points as well as at the plate center. The cubic displacement ap-
proximation yields results which model the stress distribution quite well; only the maximum values are
somewhat too large. With the fifth order polynomials, however, there is hardly any difference to the 3D
solution any more.

Thermal loads distributed linearly over the plate thickness (T = 0, T; # 0) result in a bending deflection.
The applied boundary conditions then lead to transverse shear forces. The shear forces at the edges parallel
to x; must be of opposite sign to those at the edges parallel to x,. That is reflected by the positive stresses a3
and the negative values of ay;. Transverse normal stresses are rather small, with compressive values in the
upper half and tensile ones in the lower half. They can be explained by the compatibility constraints of
concave and convex deformation shapes of separated slices.

Transverse shear stresses obtained through the extended 2D method are rather accurate. That espe-
cially holds for oy, where the shape as well as the maximum value correspond very well with the exact
results. For g3, the maximum value is about 9.5% too large and the shape is somewhat too pointed. The
generally good correspondence can be traced back to the influence of transverse shear forces at the edges
which are used to calculate the stresses in the extended 2D method. For transverse normal stresses o33, zero
values are determined. That is due to the fact that the transverse shear force derivatives vanish at the plate
center. The cubic displacement approximation yields results which deviate only slightly in case of the
maximum values for o33, whereas the fifth order polynomials determine hardly any difference to the 3D
solution.
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Fig. 3. Transverse stresses in a single layer [0] plate.

4.3. Anti-symmetric [0,90,0,90] plate

Fig. 4 depicts the transverse stresses determined for the anti-symmetric laminate of [0,90,0,90]. Such a
lay-up leads to a bending deformation even for the constant thermal load (T # 0, T, = 0). Transverse
shear forces must develop at the edges. That is reflected by the transverse shear stresses oj3 and ag,3. Their
zig-zagging mode can be explained by abrupt stiffness changes between the 0°- and the 90°-layers. Values of
013 and g3 are of opposite sign but exactly central symmetric in magnitude. Transverse normal stresses 33
are compressive at the plate center. That again is due to compatibility constraints in connection with the
lentil-like deformations.

With the extended 2D method (FSDT) the zig-zagging modes of the transverse shear stresses are well
captured. Though the values are somewhat off, they still show exact central symmetry. The transverse
normal stresses, however, are determined as tensile, their distribution differs drastically from the 3D results.
Cubic and fifth order displacement approximations deliver transverse stresses which are nearly identical to
the 3D solution.
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Fig. 4. Transverse stresses in an anti-symmetric [0,90,0,90] plate.

Through linearly distributed thermal loads (T = 0, T, # 0) additional bending is induced. Fig. 4 shows
that it results in transverse shear stresses which are of opposite sign in the upper and lower half of the plate.
The distribution of o3 in positive x;-direction is exactly the same as that of g,3 in negative x3-direction. For
o33 the dependency in thickness direction is similar to that of the single layer plate under linear temperature
load, though with opposite sign. The relatively small contribution due to the compatibility constraints of
concave and convex deformation shapes of separated slices must be superimposed by larger transverse
normal stresses due to bending.

Distribution shapes of transverse shear and normal stresses are rather well captured by the extended 2D
method (FSDT). Maximum values of the normal stresses, however, exceed those of the 3D results by about
25%. Results of the cubic displacement approximation are much more accurate, and the fifth order ap-
proach show hardly any difference to the exact solution.
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Fig. 5. Transverse stresses in a symmetric [0,90,0,90,0]s plate.

4.4. Symmetric [0,90,0,90,0], plate

Results obtained for the ten-layer symmetric laminated are given in Fig. 5. Constant temperature
through the thickness (T, # 0, T; = 0) leaves the symmetry plane straight. But the sinusoidal distribution in
x1 and x, causes the lentil-like deformation as described before. Each layer undergoes bending deformation,
and because of the abrupt stiffness changes between the 0°- and the 90°-layers transverse shear stresses
appear in a zig-zagging mode. Distribution through the thickness of o3 as well as of a3 is exactly central
symmetric. At the plate center compressive normal stresses ¢33 show roughly the same distribution as for
the single layer plate.

Again, the extended 2D method (FSDT) captures the central symmetric zig-zagging shape of the
transverse shear stresses quite well, though the values, especially for a3, are somewhat off. But as in the
single layer plate the transverse normal stresses are in no way comparable with the exact results. Cubic and
fifth order approximation result in transverse shear stresses which hardly deviate from the 3D solution.
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Only for a33, the maximum value at the plate center is 7.1% too large, whereas the fifth order approximation
result is again very close to the 3D value.

Under a linear temperature distribution (T = 0, T; # 0), the bending deformation results in positive
values for o3 and corresponding negative values for a,;. With exception of the two central 0°-layers they
are again zig-zagging forms, but now symmetric with respect to the center plain. In general, the transverse
normal stress distribution are comparable to those obtained for the single layer plate. Only in the outer 0°-
layers the stresses tend towards a different form. That can be traced back to bending overlaying the lentil-
like deformations.

The shear stress a3 especially is quite well modeled by the extended 2D method (FSDT), g,; is much
worse. That is because of the larger membrane and bending stiffness in x;-direction as compared to x;. The
transverse normal stresses by the extended 2D method capture only the bending effect, not the lentil-like
deformations and is therefore no way near the exact results. The cubic approximation (HO-3) delivers
rather accurate transverse shear stresses, whereas the normal stresses are 33% too large at the maximum.
All results from the fifth order approximation compare very well with the exact results.

5. Conclusion

Former investigations have shown that the extended 2D method as proposed by Rolfes and Rohwer
(1997), Rolfes et al. (1998a), yields excellent results in the case of mechanical loads applied to plates with
cross-ply as well as with angle-ply stacking. Also under thermal loads very good results could be obtained.
Only in some cases, the proposed method led to transverse shear and especially transverse normal stresses
which were far off the exact solution.

In this study the discrepancies could be traced back to temperature load of the form

AT(X] , X2, X3) = T() sin (Tcx1 /L]) sin (TC.Xz/Lz) + X3Tl sin (nxl /L]) sin (ﬂ:xZ/Lz).

Such a temperature distribution leads to lentil-like deformations which cannot be captured by the 2D
method. For cross-ply laminates it has been shown that higher order approximations with cubic and fifth
order polynomials for the displacement distribution in thickness direction leads to much better results.
Further investigations would be necessary to verify these findings also for plates with angle-ply stacking.

It should be noticed, however, that the number of functional degrees of freedom involved with these
higher order approximations is considerably larger as compared to the 2D method, leading to a much
higher computational effort. This higher effort should be restricted to cases where really needed. From the
results presented it is evident that only in cases of temperature loads varying considerably in the direction of
the reference surface the extended 2D method is not sufficient and cubic or fifth order polynomials should
be used to approximate the displacement distribution in thickness direction.
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